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Q1

¶

Performance Comparison of a
Microchannel Heat Sink Using
Different Nano-Liquid Metal Fluid
Coolant: A Numerical StudyQ2

¶

This article presents performance comparison between different liquid metal-based nano-
fluids termed as nano-liquid metal fluids in a microchannel heat sink to achieve ultimate
cooling solutions without sacrificing the compact structure and heavy computing speed.
The hydraulic and thermal performance of nanofluids having five different liquid metals
(Ga, GaIn, EGaIn, GaSn, and EGaInSn) as base fluid and four different nanoparticles
(CNT, Al2O3, Cu, and diamond) as solute are evaluated comparing with water-based nano-
fluids. Three-dimensional flow inside miniaturized channels is predicted using single-phase
and two-phase numerical simulations. Numerical models are validated against data
obtained from experimental studies from the literature. Three different grids are developed,
and several element sizes were compared to obtain the grid independence. Upon evaluation,

the study can point out that liquid metal-based nanofluids can generate much superior heat
transport characteristics with more than 3.41 times higher heat transfer coefficient com-

pared to conventional water-based nanofluids. GaIn–CNT combination exhibits the best
thermal solution possible with a heat transfer coefficient increment of 2.68%, 17.19%,
22.16%, and 2.62% over CNT particle-based EGaIn, EGaInSn, Ga, GaSn liquid metal,

respectively, for Re= 750. Considering hydraulic performance, performance evaluation
criterion (PEC) has been introduced and Ga-based nanofluids are found to be most effective
in this perspective. The effect on overall cooling effectiveness has also been carried out with
a detailed particle concentration study. This study paves the pathway of using these extraor-
dinary coolants in mini-/microchannel heat sinks. [DOI: 10.1115/1.4054007]

Keywords: two-phase flow simulation, microchannel heat sink, numerical analysis, nano-
liquid metal fluid, micro/nanoscale heat transfer, two-phase flow and heat transferQ3

¶

1 Introduction

In the last few decades, the process of extraction and dissipation
of heat from various kinds of mechanical and electronic devices
have gotten tremendous attention. With the rapid advancement of
technology, these concerning devices have become smaller and
compact. Along with that, the heat transfer area has shrunk quite
drastically, which made the conventional heat transfer systems to
some extent incompatible. In the context of these adverse situations,
heat dissipation technology has evolved manifold and gave rise to
minichannel and microchannel heat sinks.
The concept was first materialized by Tuckerman and Pease [1]

when they developed the idea of achieving an increased heat trans-
fer coefficient by reducing the hydraulic diameter in the channels.
The pioneering work resulted in the introduction of microchannel
heat sink that possess numerous benefits without compromising
the rate of heat transfer [2,3]. Rather it is seen that a microchannel
heat sink is capable of extracting more heat (1000 W/cm2) [1] when
compared to the traditional heat sinks (20 W/cm2).
The factors linked with the convective heat transfer in a micro-

channel heat sink are as follows: heat sink geometry, channel
aspect ratio, substrate material, and coolant flow. Diverse types of
microchannel heat sinks are available in the market. These
include wavy fin microchannel, pin-fin microchannel, oblique fin
microchannel, and double-layered microchannel [4]. Still, the rec-
tangular cross section has been considered as the most efficient

design accounting economic and machining factor [5]. The sub-
strate material is also limited by the factors associated with material
properties for stable heat transfer.
Among various methods to increment the heat transfer capabili-

ties of microchannel heat sink, finding high performing coolants can
be one of the ways. Most of the microchannel heat sink uses water
as the working fluid, but there are very few exceptions that include
other cooling media associations. Some researchers have consid-
ered using Freon-based refrigerants, but their use has been limited
due to environmental impact [6]. To overcome certain ecological
limitations, the use of eco-friendly working fluids has got more
attention. Flow boiling heat transfer was investigated in a micro-
channel heat sink using R134a, and it was reported that heat sink
wall temperature could be maintained below 30 °C when the
mass flowrate is above 1000 kg/m2s with 80 W/cm2 heat flux [7].
It is apparent that the diversified use of refrigerant as the working
fluid has been possible only in the flow boiling mechanism [8,9],
and apart from this procedure of heat transfer, the majorly used
working fluids are air and water. So, the improvement of these
two working fluids has become vital in the advancement of heat
transfer in microchannel heat sink, which has been possible by
introducing the concept of nanofluids.
Nanofluids are made when nanoparticles (typically 1–100 nm in

size) that exhibit excellent chemical stability are suspended uni-
formly in base fluids [10]. The selection of nanoparticle is critical
because they have to show chemical stability, which leads to the
use of stable metals like Cu, Ag, Au, or metal oxides, namely,
Titania (TiO2), alumina (Al2O3), and different forms of carbon
(diamond, CNT) [11]. The study of nanofluids was coined in
1993 by Masuda et al. [12], where the use of Al2O3, SiO2, and
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TiO2 as nanoparticles with the base fluid brought a significant
change in thermal conductivity and fluid viscosity. Nanofluids
have been used in almost all kinds of heat exchangers [13].
The introduction of nanofluids in different heat transfer applica-

tions has paved the way for the use of these excellent coolants in
minichannel and microchannel heat sinks. Integration of nanofluids
in microchannel heat sink has developed a lot of potential in the heat
transfer industry because of their better performance when com-
pared to the prevailing options. Among all the possible combina-
tions of nanofluids, the use of Al2O3 particles has got the
maximum attention across all the platforms of heat transfer.
Forced convective cooling performance was experimentally inves-
tigated using Al2O3/water (1–2% in vol) nanofluid in microchannel
heat sink [14], and it was reported that there is a very minute
increase in the friction factor, which is very insignificant when com-
pared to the vast reduction in thermal resistance. Heat transfer char-
acteristics were investigated numerically by Kumar and Kumar [15]
in an electronic chip heat sink, and it was found that at volume frac-
tions of 0.25%, 0.5%, and 0.75% of Al2O3/water nanofluids, the
increase in Nusselt number is 9%, 23%, and 37%, respectively,
when compared to water. Computational fluid dynamics modeling
on thermal performance of Al2O3/water was studied to compare
single- and two-phase flow [16]. It was seen that the Al2O3/water
nanofluid combination provided the least thermal resistance when
compared against a nanofluid combination of Al2O3 with engine
oil, glycerin, and ethylene glycol [17]. Although Al2O3/water nano-
fluid provided excellent performance in most studies, their long-
time usage modifies the crystallite size [18]. As a result, heat trans-
fer performance is affected. So other potential nanofluids have been
used in microchannel heat sinks for further research purposes. Siva-
kumar et al. [19] used CuO as a nanoparticle and compared the per-
formance of CuO/water and Al2O3/water nanofluids. Convective
heat transfer in a cylindrical microchannel heat sink was studied
using Cu/water nanofluid, where 0.05, 0.1, and 0.3 wt% concentra-
tion of nanoparticle was used to enhance the Nusselt number by
17%, 19%, and 23%, respectively, when compared against pure
water [20]. Jang and Choi [21] studied the contribution of the
diamond (1 vol%, 2 nm) in water as nanofluid in microchannel
heat sink and concluded that at fixed pumping power, there is a
10% enhancement in cooling performance compared to pure
water. The weight concentration of 0.01% CNT nanofluids has
been used in thermal optimization of microchannel heat sink [22],
and the result dictated that the application of nanofluid improved
the convective heat transfer by 2% at 20 °C, 12% at 30 °C, and
13% at 40 °C. The use of TiO2/water nanofluid has brought some
influential researches. A numerical study [23] recorded a
maximum increase of 19.66% in the convective heat transfer coef-
ficient at low Reynolds number when they compared TiO2-based
nanofluid to the pure water. As seen from aforementioned discus-
sions, there have been extensive studies on particle materials and
particle size of nanofluids. But as for the base fluid, the study has
been limited to water and ethylene glycol mostly. But, to reach
the ultimate cooling solution and solving the bottleneck issues
caused due to rapid miniaturizing and advancement of electronic
chips, exploration of alternate base fluid for nanofluids has
become very much requisite.
In search of alternative coolant fluids with excellent thermophy-

sical properties, the concept of using liquid metal as the base fluid in
place of the commonly used base fluid has gotten more attention.
Because of having a meager Prandtl number, liquid metals have
much higher heat conductivity than water and almost all the tradi-
tional fluids. Song et al. [24] have discussed the application of
liquid metal across various fields of energy. Smither et al. [25]
used liquid metal for heavy heat load and obtained remarkable feed-
back favoring the use of liquid metal. A wide range of research has
certified the promising contribution of liquid metal in heat transfer
applications. Initially, they have been used in nuclear reactors for
cooling [26]. Their introduction in minichannel heat sinks has
brought huge advancement in the context of heat extraction and
removal. Liu et al. compared cooling performance of water and

liquid metal under similar microchannel heat sink conditions.
Because of their consistent chemical properties and better electrical
conductivity, these fluids can be pumped without the help of any
moving mechanism by magnetohydrodynamic[27]. Later on, a
comparison work has been carried out by Muhammad et al. [28]
to show how various types of liquid metal behaves under multiple
substrate materials and varying Reynolds number. Numerical inves-
tigation of laminar flow was conducted using liquid metal by
Muhammad et al. [29]. Heat transfer performance was investigated
by Liu et al. [30] using GaInSn. Liquid metal with ceramic substrate
was used in a minichannel heat sink [31]. These have further forged
the background for the replacement of traditional fluids with liquid
metal. Although liquid metal has a huge upside over other fluids, it
experiences inevitable backlash when used in heat sinks because of
corrosion or chemical inadaptability [32,33]. Substrate coating with
molybdenum, nickel, or tungsten is a vital way to overcome such
difficulty [34].
These studies opened the door for a new research topic, incorpo-

rating nano-liquid metal fluid as the cooling medium so that we can
take advantage of both liquid metal and nanoparticles. This pro-
posed concept ensures a high thermal performance and offers a fea-
sible solution regarding bottleneck issues in electronic chip cooling.
Ma and Liu [35] proposed the concept of the nano-liquid metal fluid
for the first time, in which the nanoparticles with superior thermal
conductivity are added to the liquid metal. Moreover, since the
liquid metal has large surface tension, a much larger volume frac-
tion of nanoparticles can be added to the liquid metal, so the nano-
liquid metal fluid with outstanding thermal conductivity can be
obtained [36]. Therefore, the nano-liquid metal fluid can be
expected to be an idealistic medium for the heat transfer process.
Considering the thermophysical properties of nano-liquid metal

fluid, it is expected to get excellent thermal performance from
these in microchannel heat sinks. This serves as a state-of-the-art
technology regarding the cooling solution for miniature electronic
components. The present study has investigated a detailed
thermal, hydraulic, and overall performance comparison of different
conventionally used liquid metals (Ga, GaIn, GaSn, EGaIn, and
EGaInSn) and nanoparticle (Al2O3, Cu, CNT, and diamond) com-
binations. Influence of different operating parameters such as
applied heat flux, flowrate, flow Reynolds number, and mass con-
centration of particles on the heat transfer coefficient, friction
factor, pressure drop, and overall thermal performance of the
system is numerically investigated. The goal is to obtain the most
optimal combination of nano-liquid metal fluid for different per-
spectives of thermal, hydraulic, and energetic considerations.
For our comparison study, first, the thermal and hydraulic perfor-

mance of different liquid metal-based nanofluids is compared with
that of water using the same nanoparticle for the same particle con-
centration. Then, the effect of different nanoparticles is also studied
for different base liquid metal fluids for the same particle concentra-
tion. This study provides the nanofluid combination having the
highest heat transfer coefficient. Finally, the effect of particle con-
centration on thermal and hydraulic performance has been
studied. This systematic study further paves the way for plausible
application of nano-liquid metal fluid in practical experiments.
From our comparison study, we have noticed that GaIn-based

nanofluids have displayed the best thermal performance.
However, considering the energetic cost of pumping, Ga-based
nanofluids displayed the optimal overall performance. In brief,
liquid metal-based nanofluids have considerably higher perfor-
mance than water-based nanofluids irrespective of the Reynolds
number. By comparing the effect of different nanoparticles, CNT
displayed better performance than other conventional particles.
The effect of different volume fractions reveals that, the increase
in volume fractions of nanoparticles results in thermal performance
increment. However, this increment seems to decrease with increas-
ing volume fractions. The overall performance considering
pumping power also shows the same trait. However, with increasing
Reynolds number, the benefit of thermal performance increment
decreases.
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2 Methodology

2.1 Geometric Model. The numerical analysis presented in
this study is conducted upon a rectangular microchannel heat sink
containing 21 identical channels as shown in Fig. 1. The geometric
parameters of the heat sink, presented in Table 1, used in this study
are taken from those presented by experimental works done by
Ref. [37]. Due to the similar geometry of the channels, the compu-
tational domain is taken with three channels as presented in Fig. 2.
The top surface of the heat sink was assumed to be having an adi-
abatic wall, which generates a closed domain for fluid motion inside
the mini channels. The study contains a numerical simulation of the
fluid flow and heat transfer for a series of Reynolds number. It
should be mentioned that the flow Reynolds number never
exceeded 1000. Due to which laminar flow regimes could be
assumed for all the cases.

2.2 Flow and Thermal Model. This study aims to utilize the
most widely used models in predicting thermal and hydraulic per-
formance. From the aforementioned heat sink geometric and input
parameters, flow and thermal comparative factors can be calculated.
The friction factor for a single channel can be determined from:

f =
ΔPcDh

2LρnfU
2
in

(1)

where

ΔPc = Pin − Pout and Dh =
4WcHc

2(Wc + Hc)
(2)

Now, the overall pumping power required for the forced flow can
be calculated from:

W = NΔPcAinUin (3)

For calculating the heat transfer coefficient, the base fluid tempera-
ture difference is considered.

�h =
Q

NΔTbtdA fin

(4)

where “Q” represents total heat flux at the bottom of the heat sink.
Fin surface area, Afin= (Wc+ 2ηfinHc)Lc and base fluid tempera-

ture difference, ΔTbtd = Tw − 0.5(Tin + Tout)

η fin =
tanh(mHc)

mHc

(5)

m =

�������

2h

ksW fin

√

(6)

So, the Nusselt number can be calculated as follows:

Nu =
hDh

k
(7)

2.3 Thermophysical Properties of the Base Fluid and
Nanoparticles. The thermophysical properties of water–Al2O3

nanofluid at different volume fractions are presented in Table 2.
These properties of the mixtures are essential for using single-phase
methodology in predicting the flow and thermal performance.
For the two-phase analysis, properties of the base fluid and par-

ticles are required separately. These properties are temperature-
dependent functions and considered to be continuous over the
entire domain. Base fluid properties are presented in Table 3, and
particle’s properties are presented in Table 4.

2.4 Mathematical Formulation. The study consists of two
different approaches of numerical models to predict the heat transfer
and flow phenomenon inside the microchannels accurately. The
governing equations associated with these numerical models are
described in this section.

2.4.1 Single-Phase Model. In a single-phase model, the nano-
fluid is treated as a homogeneous fluid with continuous properties.
The differential equations expressing conservation of mass,
momentum, and energy are given [38]:
Continuity equation:

∇ · (ρnf · Vm) = 0 (8)

Momentum equation:

∇ · (ρnf · Vm · VM) = −∇P + ∇ · (μnf · ∇Vm) (9)

Energy equation:

∇(ρnf · C · Vm · T) =∇ · (knf · ∇T) (10)

The selection of suitable correlation to calculate the nanofluid prop-
erties plays a significant role in the precision of this model. There is
no universal correlation yet, and in studies, they give contradictory
results in different circumstances [39]. Nevertheless, all sources
indicate that nanofluid properties are dependent on the volume frac-
tion and diameter of particles and dependent on the temperature.
The following formulas are used to calculate nanofluid density,

specific heat, viscosity, and thermal conductivity in the present
study.
Density [40]:

ρnf = (1 − φ)ρbf + φρs (11)

Specific heat [40]:

(cp)nf =
(1 − φ)ρbf c p,bf + φρsc p,s

ρnf
(12)

Viscosity [41]:

μnf = μbf
1

(1 + φ)0.25

( )

(13)

Fig. 1 3D isometric view of the microchannel heat sink

Table 1 Geometric parameter of the MCHS

Material
MCHS height H

(mm)
MCHS width W

(mm)
MCHS length L

(mm)
Channel width Wc

(μm)
Base thickness tb

(μm)
Channel wall thickness

Wfin (μm)
Channel height

Hc (μm)

Copper 3.17 10 44.8 215 2349 261.2 821
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Thermal conductivity [41]:

knf =
ks + (n − 1)kbf − (n − 1)φ(kbf − ks)

ks + (m − 1)kbf + φ(kbf − ks)
kbf (14)

The particle volume fraction is denoted by φ, and the subscripts
s, bf, and nf express particle, base fluid, and nanofluid,
respectively. The particles are assumed to be spherical with a
shape factor n= 3.

2.4.2 Two-Phase Model. The two-phase model recognizes the
fluid domain as a liquid–solid mixture. There are two computational
techniques for modeling such phenomena based on volume frac-
tion. One is the Eulerian–Lagrangian method and another one is
the Eulerian–Eulerian model.
The Eulerian–Lagrangian method is used for low volume frac-

tion, whereas the Eulerian method is used to model the base fluid
and the Lagrangian method to model the particle flow. Even for a
very low volume fraction, the number of particles is very high,
making the computational domain’s flow prediction pretty impossi-
ble by the Lagrangian–Eulerian method due to computing power
limitation. This is why the Eulerian–Eulerian model is widely
used. The most popular Eulerian–Eulerian methods are mixture,
Eulerian and VOFQ4

¶

. The difference between the two-phase
models’ results is marginal [16]. Thus, the mixture model has
been selected in the present study due to its simplicity and less
computational power requirement with high accuracy to predict
the flow [16].

2.4.3 Mixture Model. The mixture model has become popular
due to its computational simplicity. Its key feature is that only one
set velocity constituent is solved for the momentum conservation
equation of the mixture. The effect of the secondary phase on the
primary phase via drag force and turbulence is considered. The
prior assumptions of the mixture model are as follows:

• Pressure is deemed to be shared equally between phases.
• Particle velocity is extracted from algebraic formulation [42].
• Nanoparticles are assumed to be of spherical shape.
• Phase slip considered for determination of secondary dispersed

phase concentration.

The following limitations are associated with the mixture model:

• Compressible property of the mixture is not accounted for.
• Ideal gas law can be employed; hence, pressure boundary con-

ditions cannot be implied.
• The interaction between different dispersed phases is assumed

minimum.
• To avoid complexity turbulence generation due to the second-

ary phase and its effect on the primary–secondary phase, inter-
action is neglected [42].

The partial differential steady-state governing equations express-
ing the mixture model are presented as follows [43]:
Continuity equation:

∇ · (ρnf · Vm) = 0 (15)

where Vm is the mass averaged velocity.
Momentum equation:

∇ · (ρm.Vm.Vm) = −∇p + ∇ · (μm.∇Vm) +∇ ·

∑

n

k−1

φkρkVdr,k

( )

− ρm,i βmg(T − Ti) (16)

Energy equation:

∇

∑

n

k−1

(ρk · C pk · φk · Vk · T) = ∇ · (km · ∇T) (17)

Volume fraction equation:

∇ · (φpρpVm) = −∇ · (φpρpVdr,p) (18)

where the mixture velocity Vm, density ρm, and viscosity μm are,
respectively, defined as follows:

Vm =

∑n
k=1 φkρkVk

ρm
(19)

ρm =

∑

n

k=1

φkρk (20)

μm =

∑

n

k=1

φkμk (21)

The secondary phase is denoted by “k.” The corresponding rela-
tive velocity relates to the drift velocity Vdr,k of the secondary phase.

Vdr,k = V pf −

∑

n

k=1

φkρk

ρm
V fk (22)

Similarly, the nanoparticle’s relative velocity (represented by “p”)
relative to the base fluid (represented by “f”) is defined as the slip
velocity Vpf.

V pf = Vp − Vf (23)

V pf =
ρpd

2
p

18μf fdrag

(ρp − ρm)

ρp
a (24)

Fig. 2 Front view of the computational domain

Table 2 Thermophysical properties of water–Al2O3 nanofluid

Water base (φ)

0% 1% 2% 3% 4% 5%

Knf (W/m k) 0.603 0.620 0.638 0.656 0.675 0.693
ρnf (kg/m

3) 995.7 1021.7 1047.7 1073.8 1099.8 1125.9
μnf (kg/m s) 7.977 × 10−4 8.177 × 10−4 8.376 × 10−4 8.576 × 10−4 8.775 × 10−4 8.974 × 10−4

cp,nf (J/kg K) 4183 4149 4115 4081 4046 4018
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fdrag = f (x) =
1 + 0.15Re0.687p , Rep ≤ 1000

0.0183Rep, Rep > 1000

{

(25)

where Reynolds number of nanoparticle “Rep” and acceleration “a”
can be found in the following equations:

Rep =
Vmdp

ϑ
(26)

a = g − (Vm · ∇)Vm (27)

2.4.4 Numerical Model. This study contains implementation
of different numerical models to accurately predict flow and
thermal performance of nano-liquid metal fluid inside a microchan-
nel heat sink. This section presents different numerical methods and
boundary conditions used in the study along with the validation of
the numerical model with experimental data available in the
literature.
The numerical analysis presented in this study was done with

ANSYS FLUENT 19. The finite volume method was incorporated to dis-
cretize the set of 3D coupled nonlinear differential equations. The
SIMPLE algorithm was selected for the pressure–velocity coupling.
A first-order upwind method had been used for the convective and
diffusive terms. The Gauss–Seidel method was applied in a line
going through all volumes in the computational domain to solve
the algebraic system that resulted from the numerical discretization.
Single-phase analysis was conducted based on considering the

nanofluid as a single-phase fluid, thus utilizing the thermophysical
properties of the nanofluid mixture obtained from the existing liter-
ature and calculated from theoretical correlations. The analysis fol-
lowing two-phase methodology was conducted by utilizing the
thermophysical properties of the base fluid and nanoparticles sepa-
rately according to different volume fractions of the particles.

Boundary conditions. The following boundary conditions were
used in the numerical analysis.
For the solid domain:
Constant heat flux per unit area (qf= 100 W/cm2) was applied at

the bottom wall (y= 0). The symmetry boundary condition was
applied at the left and right walls (x= 0, x=Wfin+Wc). The adia-
batic wall boundary condition was applied at the top wall, the

front, and back wall of the sink (y=H+ tb, z= 0, z= L). No-slip
boundary conditions at the fluid–solid interface.
For the fluid domain:
At fluid inlet (z= 0), uniform velocity (Uin) with constant tem-

perature (Tin= 303 K) was applied. Pressure outlet was applied at
the fluid outlet (z= L).

Validation and mesh independence. The numerical method used
in this study was validated against experimental data presented in
Ref. [37]. The geometric model explained earlier is being used in
the validation. Three different sets of grids were generated for the
numerical model. All of the generated grids were used for compar-
ing the solution accuracy with the experimental data. Two factors
were considered for the grid test. The first parameter was the accu-
racy of the grid to reach optimum solution closer to the experimen-
tal data. The second thing for consideration was the time required
for the solver to reach the convergence. Different grids generated
are shown in Fig. 3. The first set of grids contained structured hex-
ahedral cells for both solid and fluid domains. The next grid type
contained unstructured tetrahedral cells for solid and fluid
domains and the other type of grid contained structured hexahedral
cells for fluid domain, while the solid domain contained tetrahedral
unstructured cells.
The comparison of numerical results with experimental data pre-

sented in Ref. [37] with different grids generated is presented in
Table 5. The maximum discrepancy found from the comparison
is 3.9%. Although all of the generated grids show very good agree-
ment, the structured mesh generated with hexahedral elements
showed less time to reach the convergence. Thus, the grid generated
with structured hexahedral elements is selected for the numerical
analysis. Two different types of inspection were performed to
check the convergence of the numerical analysis. The first one
was quantitative convergence, which was checked by monitoring
all of the residuals. The other method was to check any variable
at any certain boundary of the numerical model, which is termed
as qualitative convergence.
To compare the accuracy of the numerical model, the results

obtained from the single-phase method and mixture model (two-
phase method) are compared with the experimental data as pre-
sented in Fig. 4. The following boundary conditions were used
for the validation: Q= 100–300 W, Tin= 30 °C, fluid mass flow-
rate= 2.1–5.5 g/s, outlet pressure= 1.12 bar, and coolant used is
2% Al2O3–water. Upon comparing the results from single-phase
and two-phase numerical models, it is found that two-phase
model exhibits better accuracy in predicting the thermal perfor-
mance of nanofluids in microchannel heat sinks. At Q= 100 W,
when the mass flowrate of the coolant is 5.5 g/s, the single-phase
and two-phase models showed 11.24% and 5.83% deviation,
respectively. At 300 W, when the mass flowrate of the coolant is
5.5 g/s, the associated deviation by single-phase and two-phase
models reached 6.97% and 5.52%, respectively. In all of the
cases, the errors associated with single-phase and two-phase numer-
ical models did not exceed 12% and 6%, respectively. Thus, for
exhibiting better accuracy, two-phase numerical model (mixture
model) has been selected for the present study.

3 Results and Discussion

This section presents thermal and hydraulic performance of dif-
ferent liquid metal-based nanofluids in a microchannel heat sink.
The thermal performance has been compared through average
heat transfer coefficient and substrate wall temperature along the
length of microchannels. The hydraulic performance of different
coolants is compared by monitoring the pressure drop due to
pumping the coolants through the microchannels. Finally, perfor-
mance evaluation criteria has been explained and utilized to
compare liquid metal-based nanofluids with water-based
nanofluids.

Table 3 Thermophysical properties of different base fluids
considered for the study

Material
Density ρ

(kg/m3)

Thermal
conductivity k

(W/m K)
Specific heat
cp (J/kg K)

Dynamic
viscosity µ

(×10−3) (Pa s)

Water 995.7 0.603 4183 0.7977
Ga 6090 31 429.9–

0.275543T
1.8879

EGaInSn 6440 16.5 295 2.4
EGaIn 6280 26.6 404 1.99
GaSn 6300 30 365 2.192
GaIn 6363.2 39 365.4 2.210

Table 4 Thermal and physical properties of nanoparticles [36]

Particle
Density ρ

(kg/m3)
Thermal conductivity k

(W/m K)
Specific heat cp

(J/kg K)

Al2O3 3600 36 0.765
Cu 8978 387.6 381
Diamond 3510 1000 497.26
CNT 1600 3000 796
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3.1 Comparison of Nano-Liquid Metal Fluid With
Water-Based Nanofluid. The current study comprises a compari-
son study of liquid metal-based nanofluids with water-based nano-
fluids. The first comparison is conducted using different liquid
metals having Al2O3 as particles with water–Al2O3 nanofluids.
The average heat transfer coefficient of water–Al2O3 is taken
from experimental studies reported in Ref. [37]. The presented anal-
ysis is conducted having similar boundary conditions for a range of
Reynolds number (Re= 150–750). The volume fraction of nanopar-
ticles is kept consistent (αp= 0.02). The fluid inlet temperature is
taken as Tin= 20 °C, and a constant heat flux of (qf= 100 W/cm2)
is applied at the bottom of the heat sink. Following the similar
boundary conditions, pressure drop due to fluid delivery inside
the microchannels are compared.
The results presented in Fig. 5 shows that the average heat trans-

fer coefficient of liquid metal-based nanofluids is much superior
compared to that of water-based nanofluid. At lower Reynolds
number, all of the coolants show quite similar thermal performance.
But while increasing the flow Reynolds number, an increase in the
average heat transfer coefficient was noticed for all the liquid metal-
based nanofluids. GaIn displays the highest heat transfer coefficient
due to its better thermal conductivity. Figure 6 displays the

comparison of pressure drop for different base fluids with water-
based nanofluids. It is noticed that liquid metal-based nanofluids
result in more pressure drop with respect to the water-based nano-
fluid due to the high density and viscosity of liquid metals compared
to that of water.
Although water-based nanofluid shows higher pressure drop than

Ga- and EGaIn-based nanofluids, conclusions cannot be reached
from this comparison since with the same Reynolds number, the
inlet velocity of water-based nanofluid is far more than liquid metal-
based nanofluids due to much lower density and viscosity of water.
Thus, further analysis is made with the same inlet velocity to obtain
the overall picture of the thermal and hydraulic performance. The
results presented in Fig. 7 show quite identical thermal performance
as shown in Fig. 5. The average heat transfer coefficient of water-
based nanofluid does not show much improvements at higher velo-
city. On the other hand, liquid metal-based nanofluids show much
improvement in thermal performance at higher velocity. In the

Fig. 4 Comparison of numerical data with experimental data

Fig. 3 Grids generated for the study

Table 5 Solution comparison with different grids

Grid type
Number of
elements

Outlet
temperature
(numerical)

Outlet
temperature

(experimental) Error

Structured 1.4 million 40.8941 °C 39.339 °C 3.953%
3.7 million 40.8935 °C 39.339 °C 3.952%
5.7 million 40.8931 °C 39.339 °C 3.951%

Unstructured 2.4 million 40.8945 °C 39.339 °C 3.954%
4.7 million 40.8941 °C 39.339 °C 3.953%
6.7 million 40.8921 °C 39.339 °C 3.948%

Unstructured +

structured
3.7 million 40.8934 °C 39.339 °C 3.951%
5.4 million 40.8932 °C 39.339 °C 3.951%
6.5 million 40.8929 °C 39.339 °C 3.950%
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case of pressure drop, as displayed in Fig. 8, liquid metal-based
nanofluids require much more pumping power at the same inlet
velocities than water-based nanofluid. This phenomenon occurs
due to much higher density and viscosity of the liquid metals
than water. Among them, EGaInSn-based nanofluids require the
most pumping power, and Ga-based nanofluids require the lowest
pumping power.
Then, to compare the thermal performance of nano-liquid metal

fluid with water-based nanofluids, the substrate wall temperature
and the bulk mean fluid temperature is evaluated. The analysis
has been carried out for Re= 500 and volume fraction (αp= 0.02).
As displayed in Figs. 9 and 10, GaIn-based nanofluids tend to

reduce the surface temperature and the fluid mean temperature
decreases among the liquid metal-based nanofluids, but as water
has a substantial higher velocity for the same Reynolds number
than liquid metals because of considerably lower density, water-
based nanofluids tends to reduce these temperatures much lower.
As presented in Table 3, the specific heat of water is quite large
than other coolants used in this study, which plays an effective
role in maintaining a lower temperature in the substrate material.
So, it has been found that although water-based nanofluid has
lower heat transfer coefficient at the same Reynolds number, they

Fig. 5 Comparison of thermal performance between liquid
metal-based nanofluids with water-based nanofluid

Fig. 6 Comparison of hydraulic performance between liquid
metal-based nanofluids with water-based nanofluid

Fig. 7 Comparison of average heat transfer coefficient versus
coolant inlet velocity

Fig. 8 Comparison of pressure drop versus coolant inlet
velocity

Fig. 9 Substrate wall temperature along the channel length
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possess the ability to keep the surface temperature at a lower value
than liquid metal-based nanofluids. On the other hand, liquid metal-
based nanofluids though possessing a higher heat transfer
coefficient shows low performance while keeping the substrate tem-
perature below a certain point. All the results show consistency with
the increasing temperature along with the length of the channel, as
suggested in Ref. [36].

3.2 Comparison of the Influence of Different
Nanoparticles. After comparing different base fluids, the effect
of different nanoparticles on the MCHS performance has been
carried out. Four different types of nanoparticles of the same con-
centration of 2% are used with the liquid metal solvents, and the
average heat transfer coefficient is calculated for all the combina-
tions. The comparison is presented in Fig. 11. At a lower Reynolds
number, all the particles display the same thermal characteristics.
But at higher Reynolds number, a difference in the thermal perfor-
mance can be seen. It can be noticed that irrespective of the base
fluid, CNT particle-based nanofluids provide a higher thermal per-
formance because of their higher thermal conductivity. From the
comparison study, it can be found that the GaIn–CNT mixture
exhibits the highest thermal performance. For GaIn as the base
fluid and Re= 750, CNT particle has an enhancement of 12.48%,
9.48%, and 8.79% over Al2O3, Cu, and diamond particles.
In case of hydraulic performance, incorporation of different par-

ticles of the same diameter at the same concentration of 2% results
in an unnoticeable change in viscosity and density. As a conse-
quence, the change in pressure drop and pumping power is also
trivial and insignificant. The effect of different particles on pressure
drop, pumping power, and friction factor for GaIn-based nanofluids
are presented in Table 6.

3.3 Comparison of Nanoparticles Volume Fraction
Influence on Heat Sink Performance. Further study of particle
concentration ranging from 1% to 5% has been carried out for
GaIn–CNT due to its outstanding thermal performance. The range
has been selected based on the fact that for higher particle concen-
tration, the hydraulic and thermal performance effect is very negli-
gible in microchannel heat sink. Also, it is quite hard to predict the
nature of the flow at very large volume fractions due to agglomer-
ation of particles and clogging of the small channels in higher
concentration.
Figure 12 presents the effect of nanoparticle volume fraction on

the convective heat transfer coefficient for GaIn–CNT at Reynolds
number ranging from Re= 250–750 and qf= 100 W/m2. It has been
found from the results that with the increasing concentration, the
thermal conductivity of the mixture also increases and hence the

heat transfer coefficient increases although the increment is not
linear. For Re= 500, the increasing concentration from 1% to 2%
results in an increase in the heat transfer coefficient by 5.35%,
whereas for the same magnitude of increment from 4% to 5%, the
heat transfer coefficient increases by 2.73%. So, the thermal perfor-
mance enhancement gradually decreases with the increasing con-
centration and becomes negligible for a higher concentration. For
the increasing Reynolds number, the concentration difference has
a higher effect on thermal performance. This finding suggests simi-
larity with the literature [36] about the effect of the Reynolds
number on thermal performance for different particle
concentrations.
Figure 13 presents the effect of particle concentration on pressure

drop and corresponding pumping power. With the increasing parti-
cle concentration, the viscosity of the mixture also increases, which
results in higher pressure drop and pumping power for the same
Reynolds number. But the effect of concentration increment on
hydraulic performance decreases at higher particle concentration
similar as seen regarding thermal performance. For Re= 500,
increasing concentration from 1% to 2% results in 3.8% viscosity
increase and corresponding 3.09% increase in pressure drop,
where the same increment of concentration from 4% to 5%
results in 2.27% increase in viscosity and corresponding 2.25%
increase in pressure drop.
The effect of the particle concentration on the substrate wall tem-

perature and bulk mean fluid temperature is presented in Figs. 14
and 15. The increase in the particle concentration in a nanofluid
increases its thermal conductivity. Thus, with the increasing particle
concentration in a nanofluid, its heat transfer capacity increases.
Consecutively, the substrate wall temperature and bulk fluid tem-
perature decrease. The reduced amplitude is enlarged with the
volume fraction increment although the variation is trivial due to
the small size of microchannels. These findings suggest that
although with the increasing particle concentration, the heat transfer
coefficient increases rapidly but due to the compactness of the heat
sink, surface and bulk fluid temperature variations are negligible;
hence, the cooling effectiveness is indistinguishable.

3.4 Performance Evaluation Criterion. While comparing
the thermal performance of any coolants in microchannel heat
sinks, the most common issue to deal with is the mismatch in the
thermophysical properties of the coolants. The difference in
certain properties like density and thermal conductivity can
deviate the actual findings of the comparison study. Since, for a
similar flow Reynolds number, the inlet velocity of water-based
nanofluids is far greater than liquid metal-based nanofluids, the
apparent results might be misleading. Conversely, an apparent
thermal performance increment can easily be nullified considering
the cost of extra pumping power requirements for any coolants.
Thus, from the energetic considerations, performance evaluation
criterion (PEC) is utilized in this study to model the overall perfor-
mance of different coolants. PEC is expressed as follows [44–46]:

PEC =
ṁcp(Tout − Tin)

VΔP
(28)

where ṁ is the mass flowrate, cp is the specific heat, Tout and Tin are
the outlet and inlet temperature of the coolants, respectively, V
represents the volumetric flowrate, and ΔP represents the pressure
drop.
To compare the overall performance of liquid metal-based nano-

fluids, performance evaluation criterion for different liquid metal-
based nanofluids are compared with 2% Al2O3–water coolants.
The volume fraction of nanoparticles is kept consistent (αp =

0.02). The fluid inlet temperature is taken as (Tin= 20 °C) and a
constant heat flux of (qf= 100 W/cm2) is applied at the bottom of
the heat sink. From Fig. 16, it has been found that for the same con-
centration of 2%, the increase of the Reynolds number results in the
reduction of PEC. This changing tendency shows that the energetic

Fig. 10 Fluid mean temperature along the channel length
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cost of pumping power is much higher than the corresponding heat
transfer enhancement benefit [36]. At a lower Reynolds number, the
thermal performance of Nano is dominating. For this reason, the
variation in different base fluid’s “PEC” is noticeable. But with
the increasing Reynolds number, the thermal effect lessens in
respect of pumping performance and the variation in PEC
reduces. Liquid metal-based nanofluids have considerably higher
PEC than water-based nanofluid irrespective of the Reynolds
number. This indicates that Ga has the higher thermal benefit, con-
sidering the cost of pumping power.

Next, PEC has been applied to assess the overall performance of
a particle’s concentration variation. GaIn–CNT nano-liquid metal
fluid has been used here as coolants. The fluid inlet temperature
is taken as (Tin= 20 °C), and a constant heat flux of (qf=
100 W/cm2) is applied at the bottom of the heat sink. Figure 17
shows the variation of PEC with Reynolds number and nanoparti-
cles volume fraction. It has been found that, with the increase of
Reynolds number, the PEC decreases. This changing tendency
shows that the energetic cost of pumping power is becoming
much higher than the corresponding heat transfer enhancement

Fig. 11 Comparison of thermal performance between different nanoparticles
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benefit. The findings presented in Ref. [36] also agree with this phe-
nomenon regarding the reduction of PEC with the increase in Rey-
nolds number. The reduced amplitude of PEC varies for different
concentrations. It has been found for lower volume fractions of
nanofluids; the PEC curve is much steeper, which indicates that

overall thermal performance reduction considering pumping cost
increment is larger for lower concentration with the increasing Rey-
nolds number. It is also evident from the figure that for higher Rey-
nolds number, the influence of concentration on the thermal,
hydraulic, and overall performance is indistinguishable.

Table 6 Hydraulic performance with different nanoparticles suspended in GaIn liquid metal

Reynolds number

Particle

Al2O3 Cu CNT Cu

Re= 500 Pressure drop (kPa) 16.067 16.084 16.059 16.065
Friction factor 0.03737911 0.036792227 0.037599858 0.037386522
Pumping power (10−3 W) 30.329694 30.36254 30.315348 30.327051

Re= 750 Pressure drop (kPa) 24.867 24.903 24.851 24.864
Friction factor 0.025712882 0.025318185 0.02586022 0.025716912
Pumping power (10−3 W) 70.414745 70.516114 70.369157 70.405684

Re= 1000 Pressure drop (kPa) 33.952 34.041 33.920 33.961
Friction factor 0.019747277 0.019467097 0.019854626 0.019757975
Pumping power (10−3 W) 128.184723 128.520734 128.064288 128.217569

Fig. 12 Comparison of thermal performance with different
volume fractions of nanofluids

Fig. 13 Comparison of hydraulic performance with different
volume fractions of nanofluids

Fig. 14 Comparison of substrate wall temperature with different
particle concentrations

Fig. 15 Comparison of bulk fluid mean temperature with differ-
ent particle concentrations
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3.5 Limitations of Numerical Investigation. As our whole
study is based on numerical simulations, despite having good con-
sistency and accuracy with reference experimental data [37], we
have several limitations and constraints. It has been suggested
that as liquid metal has large surface tension, a much larger
volume fraction of nanoparticles can be added to the liquid metal
[36]. Still the preparation and implementation of nano-liquid
metal fluid in such small-scale applications has not been carried
out experimentally. Thus, the feasibility and tangibility of the pro-
posed cooling technology in MCHS is uncertain. The limitations of
our numerical model are as follows:

• There is no universal model for the determination of nanofluid
mixture properties. Implementation of each model depends on
the combination and context of the problem.

• Since the channels of the microchannel heat sink are very
narrow, it is very challenging to calculate the fin efficiency
accurately.

• Prediction of the flow field and heat transfer phenomena for
high velocity flow and high source heat flux is very challeng-
ing and intangible.

• High surface area to volume ratio of nanoparticles provides a
very high surface energy. To minimize its surface energy, the
nanoparticles create agglomeration. The physical phenomena
of agglomeration have a disrupted effect on the overall perfor-
mance of the sink by creating a huge disturbance in the flow

field of MCHS. Sonicating or adding surfactant might help
for a short period of time, but it will not be effective for the
long term.

4 Conclusion and Recommendation

This study presented the incorporation of nano-liquid metal fluid
as the cooling medium in MCHS. This serves as a state-of-the-art
technology regarding the cooling solution for miniaturized elec-
tronic components. This numerical investigation has contributed
to this field with a detailed performance comparison of different
conventionally used liquid metal and nanoparticle combinations
along with the particle concentration study. The inferences from
investigations are as follows:

• Nano-liquid meal fluids display better thermal performance
compared to the base fluid, especially at high Reynolds
number, and among them, GaIn-based nano-liquid metal
fluid displays the most heat transfer coefficient. For the same
nanoparticle Al2O3 and Re= 600 and volume fraction (αp=
0.02), GaIn-based nanofluids display 3.41 times higher heat
transfer coefficient than conventional water–Al2O3 nanofluid.
Also, the increasing Reynolds number from 300 to 600
results in an increment of 131.58% heat transfer coefficient
for GaIn-based Nanofluids, where the same increment in Rey-
nolds number results in only 31.23% increase of the heat trans-
fer coefficient for water-based nanofluids.

• Considering the hydraulic performance, Ga- and EGaIn-based
nanofluids requires the least pumping power for the same Rey-
nolds number among other liquid metal-based nanofluids.
However, comparing the overall performance (PEC),
Ga-based nanofluids are more suitable considering energy effi-
ciency. But regarding thermal performance, GaIn-based nano-
fluids exhibit the highest performance.

• CNT particle-based nanofluids display better thermal perfor-
mance than conventional nanoparticles due to their high
thermal conductivity. For GaIn as base fluid and Re= 750,
CNT particles have an enhancement of 12.48%, 9.48%, and
8.79%overAl2O3, Cu, and diamond particles. It has been deter-
mined that the GaIn–CNT mixture exhibits the highest thermal
performance. For the same Reynolds number, the GaIn–CNT
mixture has a heat transfer coefficient increment of 2.68%,
17.19%, 22.16%, and 2.62% over CNT particle-based EGaIn,
EGaInSn, Ga, and GaSn liquid metal, respectively.

• With the increasing particle concentration, heat transfer coeffi-
cient and pressure drop across the channel both increase due to
the increase in the mixture’s thermal conductivity and viscos-
ity, respectively. Although the increment is nonlinear and the
rate of increment decreases with the increasing particle con-
centration. Considering overall performance, the increasing
concentration results in a reduction of PEC, which indicates
the energetic cost of pumping power being much higher than
the corresponding heat transfer enhancement. For higher Rey-
nolds number, the influence of concentration on the thermal,
hydraulic, and overall performance is indistinguishable.

• Despite their ability to enhance the single-phase heat transfer
coefficient due to the increased thermal conductivity, the
overall cooling effectiveness of particle concentration incre-
ment is relatively minuscule.

In this present study, optimal nano-liquid metal fluid combina-
tions have been determined considering different perspectives.
Optimal range of Reynolds number and particle concentration has
been analyzed for significant thermal performance improvements.
This has built the foundation for future experimental work regard-
ing the use of nano-liquid metal fluid in electronic component
cooling. Although this technology is constrained by the expense
of the preparation of nano-liquid metal fluids, it is an inception to
reach ultimate cooling solutions and work toward the solution of
bottleneck cooling issues associated with miniaturization of elec-
tronic components.

Fig. 17 Comparison of PEC with different volume fractions of
nanofluids

Fig. 16 Comparison of PEC between nano-liquid metal fluids
and water-based nanofluid
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Nomenclature

ƒ = friction factor
h = heat transfer coefficient (W/m2K)
k = thermal conductivity (W/m K)
H = height of the heat sink (m)
L = length of the heat sink (m)
N = number of channels
Q = total heat flux applied at the bottom of the heat sink (W)
V = volumetric flowrate (m3/s)Q5

¶ W = width of the heat sink (m)
W = pumping power (W)
ṁ = mass flowrate (kg/s)
cp = specific heat capacity (J/kg K)
qf = heat flux per unit area (W/m2)
tb = thickness of the base of the heat sink (m)

Afin = surface area of a channel wallQ6
¶

(m2)
Afin = area of the fin (m2)
Ain = area of the inlet (m2)
Hc = height of a channel (m)
Dh = hydrodynamic diameter
Wc = width of a single channel (m)
Wfin = width of the channel wall (m)
Lfin = length of the fin (m)
Pin = pressure of fluid at the inlet (Pa)
Tin = temperature at the inlet (K)
Tm = bulk mean fluid temperature (K)
Uin = inlet velocity (m/s)
Vm = mass averaged velocity
ΔP = pressure drop (Pa)

ΔTbtd = base fluid temperature difference (K)
ηfin = fin efficiency
Re = Reynolds number
Nu = Nusselt number

Greek Symbols

s = viscosity (Pa s)
ρ = density (kg/m3)
φ = volume fraction of nanoparticles

Subscripts

bf = base fluid
c = channel
f = fluid

fin = channel wall
in = inlet
k = phase
m = mixture
nf = nanofluid
p = nanoparticle
s = solid
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